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Abstract: Quantum defects in diamonds have been studied as a promising resource for quantum
science. The subtractive fabrication process for improving photon collection efficiency often
require excessive milling time that can adversely affect the fabrication accuracy. We designed
and fabricated a Fresnel-type solid immersion lens using the focused ion beam. For a 5.8 µm-
deep Nitrogen-vacancy (NV−) center, the milling time was highly reduced (1/3 compared to a
hemispherical structure), while retaining high photon collection efficiency (> 2.24 compared to a
flat surface). In numerical simulation, this benefit of the proposed structure is expected for a
wide range of milling depths.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photoactive quantum defects have garnered considerable attention as key components in quan-
tum technologies such as quantum computing [1–6], quantum sensing [7–15], and quantum
communication [16–19]. Among them, the negatively charged nitrogen-vacancy (NV−) center
has been extensively studied owing to its long coherence time [20–22], possibility of achieving
a multi-qubit register with nearby nuclear spins [23–26], and capability of position-controlled
generation [27–32]. The quantum states of electrons in the NV− center can be distinguished by
optical measurement [33] where the cumulative collection of light emitted from the NV− center
in a range of wavelengths from 600 nm to 800 nm shows spin state-dependent photoluminescence
[34].

One of the obstacles in detecting the spin state of the NV− center with high fidelity is the
low photon collection efficiency originating from the high refractive index of diamond of
approximately 2.4. Various methods have been developed to improve the photon collection
efficiency, such as pillar structures [35–37], photonic crystals [38–40], solid immersion lenses
(SIL) [41–43], and meta lenses [44]. Subtractive fabrication-based solid immersion lenses have
been widely used because of their addressability of deep emitters, easy targeting, and stability in
chemical processes. SIL is also widely used for low-temperature experiments, where additional
photon loss across the cryogenic chamber demands tools for photon collection enhancement,
as well as the temperature stability of the structure. However, the milling time required for the
conventional hemispherical solid immersion lens (h-SIL) increases with the cube of the emitter
depth. Moreover, the increased milling time can increase the uncertainty of fabrication owing to
a charging effect and a stage drift over time, as well as an unintended strain effect on NV− centers
[45]. Thus, a new approach that reduces the milling time and maintains high photon collection
efficiency is required.
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In this study, we designed and fabricated a Fresnel-type SIL using a focused ion beam (FIB)
technique for a single NV− center in diamonds. The structure is composed of concentric spherical
shapes connected by cones to not only enhance the photon collection efficiency compared with a
flat surface but also reduce the milling time cost. Using this method, we showed that the photon
collection efficiency is enhanced to 2.24 times higher than that of a flat surface under an oil
immersion lens, and the milling time is reduced to less than 1/3 of that of a hemispherical solid
immersion lens (h-SIL). Our design can be used for high-fidelity optical readout of spin states
[46] related to quantum computing and optically addressed quantum networks, especially for
photo-luminant quantum defects far from the surface of the host material.

2. Experimental implementation

We used a 2× 2× 0.5 mm type-IIa single-crystal diamond grown by the chemical vapor deposition
method containing nitrogen impurities below 5 ppb (element six). To increase the number of NV−

centers, the sample was irradiated with electrons at an acceleration energy of 2 MeV for a few
minutes and then annealed at 1200 °C for 2 hours under high vacuum conditions (≈3× 10−7 Torr).
After annealing, the sample was cleaned using triacid (a 1:1:1 mixture of sulfuric, nitric, and
perchloric acid) [47] over 1 h. For the FIB fabrication, we used a 30 keV-gallium FIB system
(FEI Helios G5), where three-dimensional milling was processed with stream files containing
Cartesian coordinates of beam positions and beam dwelling times [43]. The milling rate was
calibrated based on the measured ion-beam current. To reduce the charging effect of Ga+ ions
on the surface of the diamond, we coated the sample with 25 nm Cr using an e-beam evaporator
(SORONA SRN-200). After the FIB milling process, the Cr coating was removed with a Cr
etchant (TRANSENE Cr ETCH 905N), and the sample was cleaned with triacid.

Figure 1(a) shows the profiles of the h-SIL (blue) and Fresnel-type SIL (orange) designed for
an NV− center 6 µm below a diamond surface. In both profiles, the rays from the NV− center
are perpendicular to the arc. The major difference between the two designs is that the volume
that needs to be removed increases by the cube (square) of the depth of the NV− center for
h-SIL (Fresnel-type SIL). The design of the current Fresnel-type SIL also differs from that of the
conventional Fresnel lens in that the former aims to minimize the disturbance in the radiation
path from the light source, while the latter guides collimated incident light to a focal point.

Fig. 1. (a) The cross-section of a conventional hemispherical SIL (h-SIL, blue) and the
Fresnel-type SIL (orange) for addressing an NV− center 6 µm below the surface. The dashed
black line is a preset milling depth limit d0. (b) Scanning electron microscope image of a
representative Fresnel-type SIL. The scale bar is 5 µm. (c) Comparison between required
milling times to fabricate h- (blue) and Fresnel-type (orange) SIL as a function of depth of
the NV− center d.

The detailed design strategy for our Fresnel-type SIL is described in S1 in the Supporting
Information. Briefly, the radius of the nth sphere was recursively determined for a given maximum
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milling depth, d0. First, for constructive interference between photons emitted from the NV−

center, Rn satisfies the recursion relation

Rn = Rn−1 +
i × λ

|n0 − n|
, (1)

where i is a positive integer, λ is the wavelength emitted from the NV− center, n0 (n) is the
refractive index of immersion oil (diamond). Next, i was determined to have a maximum value
that satisfies

Rn cos θ = d or d − l, (2)

Rn−1 cos θ>d − d0, (3)

where d is the depth of the NV− center, and l is the technical depth limit of the FIB machine caused
by proximal milling. Using Eqs. (1)–(3), we limit the milling depth and decrease the adverse
effects of photon collection related to destructive interference. Figure 1(b) shows a scanning
electron microscope image of a representative Fresnel-type SIL structure, the performance of
which is discussed later.

Figure 1(c) compares the required milling times for Fresnel-type and h-SIL targeting NV−

centers at depths ranging from 3 to 10 µm at an identical milling rate and condition (for Fresnel-
type SIL, we used λ= 700 nm, d0 = 1.5 µm, l= 0), calculated from the generated stream files.
Starting from the reduced milling time of 60% for the NV− center at a depth of 3 µm compared
with h-SIL, the Fresnel-type SIL design enables affordable FIB milling time even for deeper
NV− centers. The demonstrated reduction in milling time of the Fresnel-type SIL lowers the
time cost and the risk of resulting in an unintentional off-centered structure owing to stage drift
and other mechanical instability over time.

The sharp edge structures of the Fresnel-type SIL were realized through the two milling
strategies depicted in Fig. 2(a) around NV− centers whose positions were pre-calibrated by
confocal microscopy [43] (see Fig. S2 of Supporting Information). After FIB milling process,
the topography was examined using atomic force microscopy (AFM). In the first strategy, the
milling profile followed the intended Fresnel-type SIL shape (Fig. 2(a), top panel). The resultant
apex of the edges shows a deviation of up to several 100 nm (Fig. 2(b)) from the design owing to
the proximity effects. As described in S3 of the Supporting Information, we observed a moderate
photon collection efficiency enhancement with this approach (∼1.5) compared to a flat surface.
The other strategy is to place a rectangular profile near the apex of the arc (bottom panel of
Fig. 2(a)), where milling is blanked [48,49]. For example, for l= 200 nm (blue dotted line in
Fig. 2(c)), the spaces near the edges and depths down to 380 nm (black dotted line in Fig. 2(c)) are
omitted from the milling profile. Using this strategy, we fabricated the Fresnel-type SIL around a
5.8 µm deep NV− center, as shown in Fig. 1(b). As a result, the AFM profile (Fig. 2(c)) more
closely resembles the intended lens design. Figure 2(d) (2e) shows a histogram of the differences
between the AFM profile and Fresnel-type SIL design for the first (second) milling strategy.
From the Gaussian fit, we obtained standard deviations< 40 nm, which are much smaller than the
wavelengths considered for this experiment (> 532 nm). In the first milling strategy (Fig. 2(d)),
the side peak near 120 nm likely stemmed from proximal milling. This flaw may contribute
to additional refraction and destructive interference, reducing the photon collection efficiency
compared with an ideal case.
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Fig. 2. (a) Topography obtained from atomic force microscopy (red) of fabricated Fresnel-
type SILs overlaid with intended lens profile (blue) and milling profile (black). Top panel:
the first fabrication method where the milling shape naively follows the design. Bottom
panel: method to compensate for the proximal milling effect where the region near the apex
of the structure is intentionally omitted from the milling. The magnified profiles near the
apexes (dashed black boxes in (a)) are shown in (b) for the first and (c) second approaches,
respectively. (d) and (e) show the histograms of the vertical milling errors obtained profile
from (b) and (c), respectively, with Gaussian fit.

3. Photon collection efficiency

We analyzed the performance of the Fresnel-type SIL fabricated using the second milling strategy
described above. A confocal scan of a 15× 15 µm2 area around a 5.83 µm deep NV- center
was measured in the vertical (lateral) cross-sectional plane, as shown in Fig. 3(a) (3b), using an
excitation laser with a wavelength of 532 nm and a power of 475 µW. The light emitted by the
NV− center was collected using an oil immersion objective with a numerical aperture of 1.3. To
quantify the enhancement in photon collection efficiency, we measured the photoluminescence
from NV− centers under the Fresnel-type SIL and a flat surface with varying laser power (Fig. 3(c)).
In both cases, the single quantum emitter characteristics were confirmed by Hanbury Brown and
Twiss (HBT) measurement [50] (see Fig. S2f of Supporting Information). For a Fresnel-type
SIL (flat surface), the photon counts per second (cps) reach> 80 kcps (< 40 kcps), which shows
a significant enhancement in photon collection efficiency. The dashed curves in Fig. 3(c) fit the
saturation model F=FsatI/(Isat+ I) [51], where Fsat is the saturated photoluminescence, and Isat
is the saturation laser power. We obtain Fsat = 95.5 (42.0) kcps, Isat = 175 (190) µW with the
Fresnel-type SIL (flat surface) showing that the enhancement in photon collection efficiency for
the Fresnel-type SIL is> 2.24. We also expect that the improvement will be greater using an air
objective because the critical angle for total reflection is smaller.

Figure 3(d) shows a 3-dimensional finite-difference time-domain method (FDTD) simulation
(Lumerical Solutions Ltd, black markers). For more details, see S5 in the Supporting Information.
When d0 is limited to extremely small values, complex patterns near the surface of the diamond
with sizes comparable to the wavelength of the emitted light lead to a significant reduction in
the photon collection efficiency. However, for nominal d0 of the order of 1.5 µm, a significant
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Fig. 3. (a) Lateral and (b) vertical cross-sectional confocal microscopy image of the single
NV− center with the fabricated Fresnel-type SIL (c) Photon counts as a function of laser
power for the NV− center with (blue) and without (black) Fresnel-type SIL. The dashed
curves are least-square fits to the saturation model for a single-photon source. (d) The
right-pointing triangle (up-pointing triangle) is the FDTD simulation result for a dipole in
the horizontal plane (vertical plane). The black point marks the FDTD simulation result for
uniformly distributed 40 dipoles in the plane perpendicular to the nitrogen-vacancy axis.
The red point marks the experimental result.

photon collection efficiency of> 2.7 can be obtained. The numerical simulation also shows that
the enhancement in the photon collection efficiency of our Fresnel-type lens approaches that of
the h-SIL as d0 > 3.5 µm. Currently, although the experimental result is close to the theoretical
expectation, the remaining difference between the experiment and theory may stem from the
imperfect realization of the edge structure and reflection at the diamond surface [52].

4. Spin readout

Using the fabricated Fresnel-type SIL, we showed an improvement in the signal-to-noise ratio
(SNR) for determining the spin states (spin quantum number ms = 0 vs. ms = -1) of the NV- center.
To prepare the excited state with ms = -1, we manually positioned a gold wire near the milled
structure and applied a π-pulse calibrated from a microwave-driven Rabi oscillation. Figures 4(a)
and 4(b) show histograms of the normalized spin-state-dependent photoluminescence from the
NV− center with a flat surface and the Fresnel-type SIL, respectively. The histograms were based
on 1000 records, each of which consisted of accumulated photon counts in 106 repeated readout
stages with a time window of 50 ns (total detection time= 50 ns× 106 = 50 ms). See Fig. S4 in
the Supporting Information for more details on the choice of experimental conditions, such as
the timing of readout windows in gated photon counting.

From the Gaussian fit to the data, we obtained the uncertainty in state measurement σ0 (−1) for
the spin state with ms= 0 (−1). Figure 4(c) shows the average uncertainty σ = (σ0 + σ−1)/2 as a
function of the total detection times for both the flat surface and the Fresnel-type SIL. Limited
by photon shot noise, σ is inversely proportional to the square root of the total detection time
(dashed curves in Fig. 4(c)). The enhancement in the standard deviation was constant over a wide
range of detection times, as shown in the inset of Fig. 4(c). Figure 4(d) shows the signal-to-noise
ratio (⟨SNR⟩ = (N0 − N1)/

√
N0 + N1 [53]).
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Fig. 4. Histograms of photoluminescence from the NV− center without (a) and with (b)
the Fresnel-type SIL. The top panels show schematic cross section of each design and pulse
sequence used for the experiment. Variation of (c) average standard deviation (σ) and (d)
signal to noise ratio (SNR) as a function of total detection time. The insets show nearly
constant σ and SNR as a function of total detection time.

5. Conclusion

In conclusion, we demonstrated a Fresnel-type SIL that enables efficient light collection from
photoluminescent quantum defects in high-refractive-index materials and facile fabrication within
an affordable milling time. The FDM simulation showed that the photon collection efficiency
was> 2.5, and the milling time was expected to be reduced to 15% of that required for h-SIL
for NV− centers 10 µm below the diamond surface. With the Fresnel-type SIL, we achieved the
photon collection efficiency enhancement> 2.24 compared to that of the flat surface and needed
only 30 min for a net milling time for NV− center 5.83 µm below the diamond surface (for h-SIL,
it may take more than 100 min). Our experiment broadens the possibility of using shallow solid
structures to address deep quantum defects, which can be used in various quantum information
experiments.
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